Can Pb-free Halide Double Perovskites Support High-efficiency Solar Cells?

Christopher N. Savory,† Aron Walsh,‡,¶ and David O. Scanlon*,†,§

† University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK

 $\ddagger Department\ of\ Materials,\ Imperial\ College\ London,\ Exhibition\ Road,\ London\ SW7\ 2AZ,\ UK$

¶Global E3 Institute and Department of Materials Science and Engineering, Yonsei
University, Seoul 120-749, South Korea

§Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus,

Didcot, Oxfordshire OX11 0DE, UK

E-mail: d.scanlon@ucl.ac.uk

Figure 1: HSE06+SOC band structures of a) Cs₂AgBiCl₆ and b) Cs₂AgBiI₆, with valence band in blue, and conduction band in orange. Valence band maximum (VBM) is set to 0 eV.

Figure 2: HSE06+SOC band structures of a) $Cs_2InBiCl_6$ and b) $Cs_2InBiBr_6$, with valence band in blue, and conduction band in orange. VBM is set to $0\,\mathrm{eV}$.

Figure 3: HSE06+SOC band structures of a) $Cs_2TlBiBr_6$ and b) $(CH_3NH_3)_2AgBiI_6$ (starting from the orthorhombic $(CH_3NH_3)PbI_3$ structure)¹ with valence band in blue, and conduction band in orange. The high-symmetry path used for $(CH_3NH_3)_2AgBiI_6$ uses k-points from the lowered C-centered monoclinic space group. VBM is set to $0\,\mathrm{eV}$.

Figure 4: HSE06+SOC band structures of $(CH_3NH_3)_2AgBiBr_6$ (starting from the primitive cell of the cubic $Cs_2AgBiBr_6$ structure),² with valence band in blue, and conduction band in orange. a) uses the high-symmetry path of the lowered primitive triclinic space group, while b) uses the F-centered cubic high-symmetry lines. VBM is set to $0\,\mathrm{eV}$.

Figure 5: Plot of the predicted SLMEs against film thickness for $Cs_2AgBiCl_6$ (green), $Cs_2AgBiBr_6$ (orange) and Cs_2AgBiI_6 (purple).

References

- (1) Weller, M. T.; Weber, O. J.; Henry, P. F.; Pumpo, M. D.; Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. *Chemical Communications* **2015**, *51*, 4180–4183.
- (2) McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. *Chemistry of Materials* **2016**, *28*, 1348–1354.